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ABSTRACT 
I.~t ,4 be the  algebra o f  funct ions  on  the  circle group T = {z : I z I = 1 } having 
absolutely convergent Fourier series. For a subset E of A, the algebra of 
restrictions to E of functions in A is denoted by A(E). It is shown that for sets 
that are "thick" in one of several senses, algebra homomorphisms of the A(E) 
having norm I must arise from point mappings having a certain amount of 
rigidity. 

Introduction. Let T be the circle group {z: I zl = I} and A the algebra 
of those functions on T having absolutely convergent Fourier series. A theorem 
of Beurling and Helson (see [1]) states that the only algebra automorphisms of  A 
arise from a rigid motion of the circle T, that is, a rotation of T, or a reflection of  T 

followed by a rotation. 
If E is a closed subset of T, we denote by A(E) the algebra of restrictions to E of 

the functions in A. Inspired by the result of Beurling and Helson one may inquire 
whether an algebra isomorphism of A(E1) and A(E2) must arise from a point 
mapping of E1 and E z having a certain amount of rigidity. If E~ and E 2 are inter- 
vals, this is indeed the case, as can be established by a modification of the argument 
of [1]. However, this technique yields no information for more general sets. 

As a step in the direction of identifying algebra homomorphisms in the case 
of arbitrary closed subsets of T, we here investigate isomorphisms of norm 1. 
Although the results are not complete, we are able to show for a large class of  
closed sets, which are " th ick"  in one of several senses, that such an isomorphism 
must be induced by an affine point mapping. 

A specialization of one of our results is the fact that if E~ and E2 are Cantor type 

sets with constant ratio of dissection, A(EI) and A(Ez) cannot be isometrically 
isomorphic unless the ratios are the same. It seems likely that this continues to hold 

for algebra isomorphisms that are not necessarily isometric, but our methods 

shed no light on this problem. 

1. Notations and statement of  results. 
We denote by T the circle group and by Z the group of integers. A is the Banach 

algebra of all continuous functions on T having an absolutely convergent Fourier 
series, the norm being defined by 
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(1.1) II EaJn'l l  ,t = • l a . }  • 

The dual space of A is known to be the space of all pseudomeasures on T, i.e. 
distributions on T having bounded Fourier coefficients. For f e  A and S e A* 
we put 

and since 

if f(n) = ~ f(t)e-'ntdt, S(n) = < e -~nt, S >,  

f(t) = ~,f(n)e 'n' 

we have 

oo 

(1.2) <f ,S  > = ~, f ( -  n)~(n), 
- - 0 0  

and 

(1.3) I l s h .  = supl 
n 

(1.1) and (1.3) permit us to identify A and A* with 11 and l °°respectively. 
Let E c T be closed. We denote by I(E) the ideal of all the functions in A that 

vanish on E, by N(E) the space of all pseudo-measures orthogonal to I(E) and 
by A(E) the quotient algebra Aft(E). A(E) can be realized as the algebra of con- 
tinuous functions on E which are restrictions to E of functions in A. Since I(E) 
is closed, A(E) is canonically a Banach algebra, its dual being N(E). 

Suppose that E and F are closed subsets of T and that 

H : A(F) --, A(E) 

is an algebraic homomorphism of A(F) into A(E). The sets E and F can be canoni- 
cally identified with the maximal ideal spaces of A(E) and A(F) respectively, so by 
a familiar argument (see 12] p. 76) there is a continuous ~b from E to F such that, 
for f e A(F), 

(1.4) H(f) = f o  q~. 

DEFINITION. : ~b is affine on E if there exists an integer n and a complex number 
c of modulus 1 such that 

~b(e") = ce ~n', e ~' ~ E.  
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will be called generalized aJ~ne on E if there exists a multiplicative mapping 
X : T ~ T and a complex number c of modulus 1 such that 

¢(e u) = cx(eU), e u e E. 

We assume throughout this paper I[ H [] = 1 and prove the following results: 

THEOREM 1.1 : ¢ is always generalized affine. 

THEOREM 1.2 : I f  E is a basis ¢ is aJfine. 
By the definition of the norm in A(E) for every f e  A(E) and e > 0 there exists 

g e A, g =- f on E such that 

II g IIA < IIfll ( , + 

We shall say that E has the extension property if for every f e  A(E) there exists 

g ¢ A, g - - f  on E and 

II g fl A = II:ll 

E has the restricted extension property if norm preserving extension is required 

only f o r f e A ( E ) o f  norm 1 and modulus 1. 

THEOREM 1.3. I f  E has the restricted extension property, ¢ is affine. 
A pseudo-function is an element of A* with Fourier coefficients tending to zero 

at infinity. 

DEFINITION : E is an M* set if N(E) contains non-trivial pseudo-functions. E is a 
UM* set (uniformly M*) if E n J is either empty or M* set for every open inter- 

val J. 

THEOREM 1.4. I f  E is UM* it has the extension property. 

COROLLARY. I f  E is UM*, ¢ is affine. 

THEOREM 1.5. Suppose that for some ~ > 0 there exists a positive measure tt 
of total mass 1 with arbitrarily small support contained in E such that 

I - - .  x l  
lim sup l l~(n) I < 1 - ~. 

Inl--, oo 

Then E has the restricted extension property 

COROLLARY. Under the condition of Theorem 1.5, ¢ is affine. 
Note that the condition of Theorem 1.5 is of a different nature than that of  

Theorem 1.4. A UM* set can not be too thin at any of its points while the condition 

of Theorem 1.5 just implies thickness somewhere. 
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2. Norm-preserving extensions and affine mappings. The proofs of  Theorems 
1.1 and 1.3 depend essentially on the following well known Lemma: 

LEMMA 2.1. Let G be a locally compact abelian group, ~ a continuous, positive 
positive-definite function on G, ~b(1) = 1. Then 

(2.1) G, = {~; ~ G ,  I ~(~)1 -- a} 

is a closed subgroup of G and on it @ is multiplicative. 

Proof. ~ = p where • denotes a positive measure on G. Now [ ~b(cr)[ = 1 if and 
only if a, considered as character on ~, is constant (hence = ~(a)) on the support 
of  #. 

Let us return now to the situation of §l. We have ~b: E - ~ F s u c h  that for 
f e A(F), f o dp e A(E) and 

(2.2) IlSo ~ II A,~,_-< llsll,,,r,. 
Taking S(e")= e" we obtain So ,~ = ,¢,, hence ,~ ~ A ( ~  and I1'¢' II--< 1; and since 

I'¢'1 = ~, II '¢' II ~','~, = 1. 

PROPOSITION 2.2. Suppose that (a has a norm preserving extension. Then dp 
must be affine. 

Proof. By rotating E and F we may assume that ¢(1) = 1. Let ~k be a norm 
preserving extension of ¢, that is 

¢(e") = Z(k(n)e"' 

satisfying 

(2.3) { ~O(e ~') = ¢(e i') for etteE 

~ l ~ ( n ) l  = 1. 

Since ~b(1) = ¢(1) = 1, that is 

(2.4) ] ~ ( n )  = ]~1 ~(n)[, 

~(n) > 0 for all n and ~b is positive definite. T~, defined by (2.1), is a closed sub- 
group of T, containing E, on which ~b is multiplicative; hence, for some n, 
~(flt) = ei,, on T~ and the theorem is proved. 

As an immediate corollary to Proposition 2.2 we obtain Theorem 1.3. 

3. Generalized norm preserving extensions. Let E and F be finite sets con- 
taining N linearly independent points each. Let ¢ be any mapping of E onto F. 
Then by Kronecker's theorem, f - - , f  o ~b is an isometry of A(F)onto A(E). Clearly ¢ 
need not be affine and therefore has no norm preserving extension in A. In this case 
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it is clear, however, that ~b is generalized affine. And we prove next that such is the 
case in general. 

We shall denote by m the second dual of A (that is, the dual of yo). For a e  m 

define 

#(e") = < {e~t},a >. 

An element a e m is called an extension o fa  func t ionf  defined on some subset E of 
T, if 

#(e l') = f ( e  t') for e t' e E. 

LEMMA 3.1. Let f e A ( E ) .  Then there exists in m an extension a of  f such that 

[ITIIA  ) -- II II. 

Proof. f defines canonically a linear functional of norm IIflIA, , on the subspace 
N(E) of  l °°. By the Hahn-Banach theorem this functional has a norm preserving 
extension a em.  Now if e ~' e E, {e ~n'} e N(E), and 

f ( e  i') = < {e'nt},f> = < {e i~t }, a> = O(e"). 

We turn now to the proof  of  Theorem 1.1. As in the proof of  Proposition 2.2 
we can assume ¢(1) = 1. Let tre m be a norm preserving extension of ¢, that is 

II II = 1, and 0 ( e " ) =  ~b(e ~') on E. We claim that 0(e") is positive definite on 
TD, To being the circle group with the discrete topology. In order to see this we can 
restrict tr to the closed subspace of l °° generated by the exponentials {(eint}, eUe T}, 
i.e., the uniformly almost periodic sequences; as such, a is a measure of mass 1 on 
B, the Bohr compactification of Z (and the dual of To). Since #(1) = 1, the measure 
corresponding to tr is positive and 0(e ~t) is positive definite. By Lemma 2.1 a(e ~t) 
is multiplicative on some subgroup G of  T containing E; it is easy to see ([3] 
Th. 37) that O(e")16 can be extended to be multiplicative on T, and ¢ is generalized 

affine as claimed. 
Theorem 1.2 is an immediate consequence of Theorem 1.I and of the following: 

LEMMA 3.2. Let E be closed in T and a basis, Z a character of T such that 

Z I n is continuous. Then X is continuous. 

Proof. Put E ,  = (e~t: t = ~'~ t j, e it~ ~ E}. Since E is a basis T = U mEre, and 

since Em is closed for all m, we obtain, using the theorem of  Baire, T =Em for 
m > m0. In order to show that Z is continuous we have to show that, given e > 0, 
there exists some interval I on T such that the variation of Z on I is smaller than 8. 

k Put et = e/mo and E = U j=l E~ E j being portions of E on which the variation 

of  X is smaller than el. 
Clearly, for an appropriate choice of  j l ,  "",Jmo, E' = {e~t : t = ] ~ ° t  v, e it~ E E j~} 

contains an interval I and the variation of  X on E '  is smaller than mos~ = e. 
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4. Sufficient conditions for the existence of norm-preserving extensions. Let E be 

closed in T. For 0 < e < 1 we denote by N~(E) the following set: 

(4.1) N,(E)={S:SeN(E),IiSIi=I, limsupI~(n)I<I--8}. 
lal-~co 

PROPOSmON 4.1. Let f s A(E), 0 <e< 1. Suppose that 

(4.2) Ilfh<~,: supl < f , s  > I, S~N,(E) 

Then f has a norm preserving extension in A. 

Proof. Let a ~ m  = (l°°) * be a generalized norm preserving extension of f 
(cf. Lemma 3.1). Because of the canonical identification of l °° with the space of all 
continuous functions on the ~ech compactification fl(Z) of Z, a can be identified 

with a measure# on/7(Z) and II~ll = Sl d . l  ~ has a decomposition/x=lx i + ~2, 
with #1 concentrated on Z and ix 2 vanishing on every finite subset of Z, such that 

(4.3) fl~,l= f i~,,l+ f i~,:l. 
Denote by trj the elements in m corresponding to #s, so a = 41 + 42 and 

(4.4) I1 ~ II = II ~, II + II ~2 II 
Now for every {h(n)} e l Go 

(4.5) I < {h(n)}, 42 > I ~ II ~ II lim sup I h(n) 1. 
h:l --> Go 

SO that if S ~ N,(E) we have 

< f , S >  = < S , a >  = < S, at  > + < S, tr2 > 

and 

(4.6) <s,  s > I --< I! ~, II + (1 - ~)II ~ II = Ilfll ~<~, - ~  II ~: II 
which is compatible with (4.2) only if II ~2 II = 0 This means p = p, and hence 
a e 11. We have shown therefore, not only that a norm preserving extension in A 
exists, but that every norm preserving extension is necessarily in A. 

Proof of Theorem 1.5. Let f~A(E) ,  llfll = 1, [f(eit)l = 1. Since f is con- 
tinuous on E it is clear that if/~ is a positive measure which has a very small support 

contained in E, and f d# = 1, [ j" fd#[ will be very close to 1 --][fl[" This remark 
and the assumptions of Theorem 1.5 imply (4.2), and the result follows from 

Proposition 4.1. 
We conclude with the proof of Theorem 1.4. This can be done via Proposition 

4.1 but it is almost as easy to give a direct proof, and that is what we do. 
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Proof  of Theorem 1.4. We denote, as is usual, by c o the subspace of l °° of those 
sequences that converge to zero. Canonically c* = 11. Put L ( E ) =  N(E)c~ Co. If  
f e A ( E ) ,  f defines a linear functional of norm }ifll '  on L(E), where 
clearly Ilfll'_<_ IIflIA, ," By the Hahn-Banach theorem this functional can be 
extended to a functional of the same norm on Co; there exists, therefore, an element 
h ~ l x, I[ h II = [!fll ', such that for every S ~ L(E), 

< f , S  > = < S ,h  > = ~,~q( - n)h(n).  

We contend that if E is UM* we have f ( e " )  = h(eU)( = ~h(n)e  tnt) for eitEE. 
That is,/~(e tt) is the extension we seek. Assume f ~ h  on E. For some e "° e E, 
f ( e  it°) - /~(e t~°) # 0, and by continuity there exists an interval J containing e ~to such 
that f -  h is bounded away from zero on J n E. Let S # 0 be a pseudo-function 
carried by J n E. Let g ~ A such that g(e t') = [ f (e  ~t) -h(e~')] - t  for eit~ J n E, 
and n be an arbitrary integer, ge ~t S ~ L(E), so < f -  h, ge~ntS > = O. But 

< f - It, g e ~ t S  > = < eint, S > = ,~( - n),  

and consequently S(n) - 0 and S = O, which gives the desired contradiction. 
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